Multi-imager compatible actuation principles in surgical robotics.
نویسنده
چکیده
Today's most successful surgical robots are perhaps surgeon-driven systems, such as the daVinci (Intuitive Surgical Inc., USA, www.intuitivesurgical.com). These have already enabled surgery that was unattainable with classic instrumentation; however, at their present level of development, they have limited utility. The drawback of these systems is that they are independent self-contained units, and as such, they do not directly take advantage of patient data. The potential of these new surgical tools lies much further ahead. Integration with medical imaging and information are needed for these devices to achieve their true potential. Surgical robots and especially their subclass of image-guided systems require special design, construction and control compared to industrial types, due to the special requirements of the medical and imaging environments. Imager compatibility raises significant engineering challenges for the development of robotic manipulators with respect to imager access, safety, ergonomics, and above all the non-interference with the functionality of the imager. These apply to all known medical imaging types, but are especially challenging for achieving compatibility with the class of MRI systems. Even though a large majority of robotic components may be redesigned to be constructed of MRI compatible materials, for other components such as the motors used in actuation, prescribing MRI compatible materials alone is not sufficient. The electromagnetic motors most commonly used in robotic actuation, for example, are incompatible by principle. As such, alternate actuation principles using "intervention friendly" energy should be adopted and/or devised for these special surgical and radiological interventions. This paper defines the new concept of Multi-Imager Compatibility of surgical manipulators and describes its requirements. Subsequently, the paper gives several recommendations and proposes new actuation principles for this concept. Several implementations have been constructed and tested, and the results are presented here. This is the first paper addressing these issues.
منابع مشابه
Sliding Mode Control of Piezoelectric Valve Regulated Pneumatic Actuator for Mri-compatible Robotic Intervention
This paper presents the design of a magnetic resonance imaging (MRI) compatible pneumatic actuator regulated by piezoelectric valve for image guided robotic intervention. After comparing pneumatic, hydraulic and piezoelectric MRI compatible actuation technologies, we present a piezoelectric valve regulated pneumatic actuation system consisted of PC, custom servo board driver, piezoelectric valv...
متن کاملDesign and Precision Control of an Mr-compatible Flexible Fluidic Actuator
Magnetic resonance imaging (MRI) offers many benefits to image-guided interventions, including excellent soft tissue distinction, little to no repositioning of the patient, and zero radiation exposure. The closed, narrow bore of a high field MRI scanner limits clinician access to the patient, such that an MR-compatible robot is essentially required for many potential interventions. A robotic sy...
متن کاملFluid Powered Miniature In-vivo Robots for Minimally Invasive Surgery (mis)
Minimizing the invasiveness of surgery is believed to improve patient outcomes. Bleeding, infection, and pain are major concerns in surgery afflicting patients for decades. Minimally invasive techniques have come into play to reduce these concerns and smooth the evolution of abdominal surgery to a scarless process where nearly all surgeries can be performed without a skin incision. Technology c...
متن کاملFollow-the-Leader Deployment of Steerable Needles Using a Magnetic Resonance-Compatible Robot With Stepper Actuators1
Epilepsy is a debilitating, potentially fatal, seizure-causing neurological disorder that will affect approximately 1% of people worldwide in their lifetimes [1]. Medication-based treatment is ineffective for an estimated 40% of epilepsy patients [1]. As an alternative to medication, surgical removal of the hippocampus (commonly, the origin of epileptic seizures) successfully cures epileptic se...
متن کاملAdditively Manufactured Flexible Fluidic Actuators For Precision Control in Surgical Applications
Abstract Previously, the Milwaukee School of Engineering (MSOE) demonstrated a dexterous tele-operational robotic system where actuators, joints, and linkages were fabricated simultaneously using Selective Laser Sintered Nylon 12. Primary motivation for this research was to conceive novel fluid power actuators that were inherently safe, compact, and Magnetic Resonance Imaging (MRI) compatible f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of medical robotics + computer assisted surgery : MRCAS
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2005